
Security Guide
Oracle Banking APIs

Patchset Release 22.1.2.0.0

Part No. F56935-01

November 2022

Security Guide

November 2022

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001

www.oracle.com/financialservices/

Copyright © 2006, 2022, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Preface .. 1–1

1.1 Intended Audience .. 1–1

1.2 Documentation Accessibility ... 1–1

1.3 Access to Oracle Support ... 1–1

1.4 Structure ... 1–1

1.5 Related Information Sources .. 1–1

2. General Security Principles .. 2–1

2.1 Restrict Network Access to Critical Services .. 2–1

2.2 Follow the Principle of Least Privilege .. 2–1

2.3 Monitor System Activity .. 2–1

2.4 Keep Up To Date on Latest Security Information ... 2–1

3. Secure Installation and Configuration ... 3–1

3.1 Architecture Diagram .. 3–1

3.2 Installing WebLogic... 3–1

3.3 Configuring SSL .. 3–1

3.4 Disable SSLv3 .. 3–4

3.5 HTTP Response Header Configurations .. 3–5

3.6 Cookie Attributes .. 3–7

3.7 Password Policy Guidelines ... 3–7

3.8 Configuring 2FA for login .. 3–8

3.9 Configuring 2FA attributes .. 3–10

3.10 Choosing a non blocking PRNG ... 3–13

3.11 Mobile App SSL Pinning Configuration .. 3–14

3.12 Generating Security Keys ... 3–15

3.13 API Rate Limiting Recommendations ... 3–18

4. Guidance for Implementation Teams ... 4–1

4.1 CSRF Mitigation – Generating Nonces .. 4–1

4.2 Indirect Object Reference Implementation ... 4–1

4.3 Output Encoding ... 4–3

4.4 Implementing a custom Cryptography Provider ... 4–4

4.5 Implementing a custom 2FA mechanism ... 4–5

4.6 Configuring Password Printing Securely .. 4–6

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

 Customers

 Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:

 Introduction

 Preferences & Database

 Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking APIs Patchset Release 22.1.2.0.0, refer to the following
documents:

 Oracle Banking APIs Installation Manuals

 Oracle Banking APIs Licensing Guide

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

General Security Principles

2. General Security Principles

The following principles are fundamental for using any application securely.

2.1 Restrict Network Access to Critical Services

Keep both the Oracle Banking API middle-tier and the database behind a firewall. In addition, place
a firewall between the middle-tier and the database. The firewalls provide assurance that access
to these systems is restricted to a known network route, which can be monitored and restricted, if
necessary. As an alternative, a firewall router substitutes for multiple, independent firewalls.

If firewalls cannot be used, be certain to configure the TNS Listener Valid Node Checking feature
which restricts access based upon IP address. Restricting database access by IP address often
causes application client or server programs to fail for DHCP clients. To resolve this, consider using
static IP addresses, a software or a hardware VPN or Windows Terminal Services or its equivalent.

2.2 Follow the Principle of Least Privilege

The principle of least privilege states that users should be given the least amount of privilege to
perform their jobs. User privileges should be reviewed periodically to determine relevance to current
job responsibilities.

2.3 Monitor System Activity

System security largely depends on the following practices:

 Good security protocols

 Proper system configuration

 System monitoring

The system needs to be constantly monitored from a monitoring tool.

2.4 Keep Up To Date on Latest Security Information

Oracle continually improves its software and documentation. It is recommended to keep your
software updated.

Home

Secure Installation and Configuration

3. Secure Installation and Configuration

This chapter provides an overview of the architecture of the deployment and describes the
installation and configuration procedure for Oracle Banking API.

Please note that this is only a guide to securing the Oracle Banking API application and does not
replace periodic reviews of the security architecture of the entire ecosystem of multiple applications
maintained by the customer. The guidance provided in this document must always be augmented
by specific understanding of the security considerations of the specific deployment architecture.

3.1 Architecture Diagram

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | Confidential – Oracle Internal 4

L
O
A
D

B
A
L
A
N
C
E
R

OAM &
Webgate

Access Management

OAM OPSS

Identity Management

OIM OPSS

OBDX

Directory Service

IDM

MetaData

Application

Data

Public

Zone

Web Tier Application Tier Data Tier

User

3.2 Installing WebLogic

Installation of WebLogic Server can be done by referring to the documentation published at

https://docs.oracle.com/cd/E24329_01/doc.1211/e24492/toc.htm.

3.3 Configuring SSL

One way SSL between the presentation tier and the application on WebLogic server is supported.
The detailed configuration is explained below:

Note: Procure an external CA signed certificate before proceeding further. Follow the instructions
below to install the certificate once the certificate is available

https://docs.oracle.com/cd/E24329_01/doc.1211/e24492/toc.htm

Secure Installation and Configuration

1. Import the Certificate into a Java Trust Keystore

Execute the following command:

keytool -import -trustcacerts -alias sampletrustself -keystore

SampleTrust.jks -file SampleSelfCA.cer.der -keyalg RSA

keytool -import -alias `hostname -f` -file `hostname -f`.cer -

keystore <JAVA_HOME>/jre/lib/security/cacerts -storepass changeit -

noprompt

2. Configure Application Domain’s WebLogic with Custom Identity and Trust Keystores

a. Open the WebLogic admin console and navigate to
Home --> Summary of Servers --> AdminServer.

b. Click the Keystores tab.

 Click the Change button.

 Select Custom Identity and Java Standard Trust option from the list.

 Click the Save button.

 Enter the following details in the Identity and Trust sections:

Secure Installation and Configuration

Field Value

Custom Identity
Keystore

Absolute path of the custom keystore

Custom Identity
KeyStore Type

JCEKS

Custom Identity
KeyStore Passphrase

<Passphrase>

Confirm Custom
Identity KeyStore
Passphrase

<Re-enter the same Passphrase>

Enter the passphrases that were used while creating the custom Identity Keystore and certificate.

a. Click the Save button.

b. Click the SSL Tab.

Secure Installation and Configuration

Enter the following details in the Identity section:

Field Value

Private Key Alias <Alias>

Private Key
Passphrase

<Passphrase>

Confirm Private Key
Passphrase

<Re-enter passphrase>

i. Enter the passphrases that were used while creating the certificate.

ii. Click the Save button.

iii. Click the Advanced link.

iv. Ensure that Two Way Client Cert Behavior is set to Client Certs Not Requested.

c. Click the General tab.

d. Select the SSL Listen Port Enabled check box.

e. Click the Save button.

3.4 Disable SSLv3

By default, SSLv3 should be disabled.

Specifying the weblogic.security.SSL.protocolVersion system property in a command-

line argument that starts the WebLogic Server lets you specify the protocol that is used for SSL
connections.

The following command-line arguments can be specified so that WebLogic Server supports only
TLS connections:

-Dweblogic.security.SSL.protocolVersion=TLS1

Note: If you don’t specify the above property, WebLogic assumes SSLv3 by default.

Secure Installation and Configuration

3.5 HTTP Response Header Configurations

The following are some HTTP Response Headers that mitigate certain vulnerabilities.

Vulnerability HTTP Response Header

Clickjacking X-Frame-Options

XSS Content-Security-Policy

X-XSS-Protection

Cookie hijacking

Protocol Downgrade attacks

Strict-Transport-Security

Retrieving Sensitive data from
browser cache

Cache-Control

The sections below specify how to configure these response headers in the httpd.conf file of

the web server.

Secure Installation and Configuration

3.5.1 X-Frame-Options

Header always append X-Frame-Options SAMEORIGIN

3.5.2 Content-Security-Policy

Header set Content-Security-Policy "default-src 'none'; img-src

'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval'; style-src

'self' https://fonts.googleapis.com 'unsafe-inline'; object-src

'none'; frame-src 'none'; font-src 'self'

https://fonts.gstatic.com; connect-src 'self' http://<OAM

Server>:<OAM Port>/; child-src 'self'"

Please note that the policy mentioned here is for the base product. If the product gets customized
and content from different URLs needs to be allowed to be executed by the browser, then this
policy will have to be modified accordingly.

3.5.3 X-XSS-Protection

Header set X-XSS-Protection “1; mode=block”

3.5.4 Strict-Transport-Security

Set this for your top level domain. The header directive needs to be included inside the VirtualHost
directive

<VirtualHost *:443>
 Header always set Strict-Transport-Security “max-

age=31540000; includeSubDomains”

</VirtualHost>

Consider submitting your website to be included in the HSTS preload list of websites maintained

by Google Chrome at https://hstspreload.appspot.com/.

Other browsers like MS IE 11, MS Edge, Firefox and Opera also refer to this list maintained by
Google and therefore the security offered by this mechanism will extend to other browsers too.

3.5.5 Cache-Control

Header set Cache-Control "max-age=0, no-cache, no-store, must-

revalidate"

Header set Pragma "no-cache"

Header set Expires 0

https://hstspreload.appspot.com/

Secure Installation and Configuration

3.6 Cookie Attributes

Cookie contains sensitive information like session ID which is stored on the client. The cookie is
sent with every request from client to server to maintain a valid authenticated session. Cookies can
be secured by properly setting cookie attributes. The following two attributes must be set to secure
a cookie.

1. Secure: This attribute tells the browser to only send the cookie if the request is being sent
over a secure channel such as HTTPS.

2. HttpOnly: This attribute is used to help prevent attacks such as cross-site scripting, since it
does not allow the cookie to be accessed via a client side script such as JavaScript.

Set these attributes in the WebLogic deployment descriptor file (weblogic.xml). The following

attributes need to be included in <wls:session-descriptor>

<wls:cookie-secure>true</wls:cookie-secure>

<wls:cookie-http-only>true</wls:cookie-http-only>

3.7 Password Policy Guidelines

Our recommendations for setting a password policy are in line with the latest recommendations
from NIST as of June 2018.

1. The minimum length of a password must be at least 8 characters. You can choose to
increase this number to 10 or 12.

2. The maximum length of a password must be at least 64 characters. You can choose to
increase this number to 80 or 100.

3. Do not cause passwords to expire without reason. A password must be expired only when
the user has forgotten it and has requested a reset.

4. Allow all printable ASCII characters, including spaces, and accept all UNICODE characters
too.

5. Do not force the user to use a combination of upper case characters, lower case characters,
numbers and special characters.
Instead recommend to him that he uses “passphrases” instead of passwords, and that’s the
reason why the recommended minimum length must be at least 8 and the maximum length
must be at least 64.
Passphrases are sentences like “Wow, I like the freedom to choose this password!!” (yes,
with spaces, a comma and exclamation marks in it)

Secure Installation and Configuration

3.8 Configuring 2FA for login

Oracle Banking API supports a 2nd factor of authentication during login.

1. Login as the Admin user

2. Click on “Authentication”

3. Choose the Enterprise role and user segment for which you want to configure 2FA for login
and click on “View”

Secure Installation and Configuration

4. You will see the following screen where you can configure 2FA for virtually every transaction,
including Login.

5. Click on the “Edit” button at the bottom of the screen.

6. You can now configure up to 2 factors (levels) of authentication / re-authorization.
However please note that the system will not let you set “Security Questions” as a factor of
authentication / re-authorization for the Login transaction. You will have to choose either OTP
or Soft Token.

Secure Installation and Configuration

7. Click on the “Save” button at the bottom of the screen, followed by the “Confirm” button seen
in the subsequent verification screen.

3.9 Configuring 2FA attributes

This section covers some key attributes of the 2nd factor of authentication (re-authorization).
Attributes like the maximum number of times a user is allowed to hit the “Resend” button after an
OTP is generated, the pool of security questions etc are a couple of examples of 2FA attributes.

These attributes are seen in the database in the PROP_ID column of the table
DIGX_FW_CONFIG_ALL_B (CATEGORY_ID = ‘authenticationConfig’). The following table lists
down all possible attributes and their significance. Their values must be set in the column
PROP_VALUE.

Secure Installation and Configuration

PROP_ID SIGNIFICANCE

OTP.EXPIRATION_TIME Time in milliseconds after which an OTP will
expire.

T_SOFT_TOKEN.EXPIRATION_TIME Time in milliseconds after which a time based
soft token will expire.

R_SOFT_TOKEN.EXPIRATION_TIME Time in milliseconds after which a random soft
token will expire.

SEC_QUE.EXPIRATION_TIME Time in milliseconds after which answers to
the security questions presented to the user
will no longer be considered for re-
authorization.

EXPIRATION_TIME Time in milliseconds after which the re-
authorization factor will expire. This is the
default property that will be looked up in case
factor specific expiration times are not
maintained.

OTP.MAX_NO_ATTEMPTS

Max number of unsuccessful attempts of
entering a valid OTP after which all 2FA
enabled transactions for the user will be
locked for a "cooling period" amount of time.

T_SOFT_TOKEN.MAX_NO_ATTEMPTS Max number of unsuccessful attempts of
entering a valid time based soft token after
which all 2FA enabled transactions for the
user will be locked for a "cooling period"
amount of time.

R_SOFT_TOKEN.MAX_NO_ATTEMPTS Max number of unsuccessful attempts of
entering a valid random soft token after which
all 2FA enabled transactions for the user will
be locked for a "cooling period" amount of
time.

SEC_QUE.MAX_NO_ATTEMPTS Max number of unsuccessful attempts of
entering valid answers to security questions
after which all 2FA enabled transactions for
the user will be locked for a "cooling period"
amount of time.

Secure Installation and Configuration

PROP_ID SIGNIFICANCE

MAX_NO_ATTEMPTS Max number of unsuccessful attempts of
entering valid 2FA after which all 2FA enabled
transactions for the user will be locked for a
"cooling period" amount of time. This is the
default property that will be looked up in case
factor specific Max Attempts are not
maintained.

TFA_LOCK_COOLING_PERIOD This is the cooling period in milliseconds after
which 2FA transactions which were locked out
because of exceeding
MAX_NO_ATTEMPTS, are enabled once
again.

OTP.MAX_ACTIVE_REF_NO Max number of attempts to generate 2FA
reference numbers for a transaction after
which no more attempts can be made for
EXPIRATION_TIME units of time for that
factor of authentication. This one is specific to
OTPs.

This property is in place as a basic
mechanism to protect the application against
DOS attacks where the end user can keep
generating OTPs by initiating transactions
and making the system generate the 2nd factor
of authentication, but not going through and
completing the transaction.

T_SOFT_TOKEN.MAX_ACTIVE_REF_NO Max number of attempts to generate 2FA
reference numbers for a transaction after
which no more attempts can be made for
EXPIRATION_TIME units of time for that
factor of authentication. This one is specific to
Time Based Soft Tokens.

R_SOFT_TOKEN.MAX_ACTIVE_REF_NO Max number of attempts to generate 2FA
reference numbers for a transaction after
which no more attempts can be made for
EXPIRATION_TIME units of time for that
factor of authentication. This one is specific to
Random Soft Tokens.

SEC_QUE.MAX_ACTIVE_REF_NO Max number of attempts to generate 2FA
reference numbers for a transaction after
which no more attempts can be made for
EXPIRATION_TIME units of time for that
factor of authentication. This one is specific to
Security Questions.

Secure Installation and Configuration

PROP_ID SIGNIFICANCE

MAX_ACTIVE_REF_NO Max number of attempts to generate 2FA
reference numbers for a transaction after
which no more attempts can be made for
EXPIRATION_TIME units of time for that
factor of authentication. This is the default
property that will be looked up in case factor
specific Max Active Reference Number
attempts are not maintained.

OTP.RESEND_COUNT Max number of times a user can hit the
“Resend” button in case of OTPs. After
exceeding this count, the user will need to re-
initiate the transaction all over again.

retailuser.NO_QUE_ANS Number of security questions that a retail user
needs to setup (answer). During an actual
transaction he will be asked a sub set of these
questions.

corporateuser.NO_QUE_ANS Number of security questions that a corporate
user needs to setup (answer). During an
actual transaction he will be asked a sub set
of these questions.

administrator.NO_QUE_ANS Number of security questions that an admin
user needs to setup (answer). During an
actual transaction he will be asked a sub set
of these questions.

NO_QUE_ANS Number of security questions that a user
segment needs to setup (answer). During an
actual transaction he will be asked a sub set
of these questions. This is the default property
that will be looked up in case factor specific
NO_QUES_ANS is not maintained

3.10 Choosing a non blocking PRNG

OBAPI uses Java’s random number generation capabilities internally. However the out of the box
algorithm for PRNG configured in the JDK can block the thread after a certain time if there isn’t

enough randomness available. This is because the default configuration uses /dev/random on

Linux for PRNG.

Therefore we recommend that you navigate to <JDK_HOME>/jre/lib/security and edit the

java.security file. Comment out the old property and change its value as shown below

Secure Installation and Configuration

This will ensure that the application uses /dev/urandom for PRNG.

Needless to say, make sure you make this change in the JDK that your WebLogic server is going
to be using.

3.11 Mobile App SSL Pinning Configuration

SSL Pinning has been implemented in the mobile apps, both iOS and Android. The public key
certificate of the server needs to be imported into these apps for the connection to the server to be
successful. The certificate needs to have an extension .cer and needs to be placed in mobile app
workspaces as shown in the images below:

The name of the certificate file needs to be configured in a property file. For iOS it is the app.plist
file

Secure Installation and Configuration

For Android it is the app.properties file

3.12 Generating Security Keys

Oracle Banking API supports generating Security Keys required for encryption of sensitive
information.

3.12.1 Generating Public and Private Key Pair

Oracle Banking API supports generating Public and Private Key pair that will be used for encryption
of login password on the User Interface.

1. Login as the Admin user

2. Click on Menu item “Security”  “Security Keys”

Secure Installation and Configuration

3. Click on “Generate” for new Public and Private Key Pair generation used for encryption.

4. Restart the WebLogic server for utilizing the above generated key pair.

By default the Public and Private key pair is not generated and the password is not encrypted on
the User Interface. Once the Key Pair is generated, encryption will be effective after server
restart.

In case of Private key compromise, an Administrator can generate a new Key Pair to mitigate the
impact of compromised key.

Secure Installation and Configuration

3.12.2 Generating JWT Encryption Key

Oracle Banking API supports generating key that will be used for encryption of JSON Web Token
(JWT). The JWT is used as a session token for Alternate login (Fingerprint/Pin/Pattern) on mobile
apps.

1. Login as the Admin user.

2. Click on Menu item “Security”  “Security Keys”

3. Click on “Generate” for new encryption key generation used to encrypt JWT.

4. Restart the WebLogic server for the utilizing the above generated encryption key.

By default the JWT Encrpytion key is not generated and the JWT is stored in clear text. Once the
Encyrption Key is generated, encryption will be effective after server restart.

In case of JWT encryption key compromise, an Administrator can generate new encyrption key to
mitigate the impact of compromised key.

Secure Installation and Configuration

3.13 API Rate Limiting Recommendations

We recommend API Rate Limiting to be implemented for Business APIs. These APIs can be
configured in Web Application Firewall (WAF) for protection from Denial of Service (DoS) attacks.

3.14 Host Header Injection Attack Recommendations

A web server may host several web applications on the same IP address, referring to each
application via the virtual host. In an incoming HTTP request, web servers often dispatch the
request to the target virtual host based on the value supplied in the Host header. Without proper
validation of the header value, the attacker can supply invalid input to cause the web server to:

 dispatch requests to the first virtual host on the list

 cause a redirect to an attacker-controlled domain

 perform web cache poisoning

We recommend the following configuration to be included inside the VirtualHost directive of the
ssl.conf file in the OHS. The file would be available at location
domains\<Your_domain>\config\fmwconfig\components\OHS\<OHS_instance>

<VirtualHost *:<OHS_PORT>>

 ServerName <OHS_DOMAIN>

 RewriteEngine on

 RewriteOptions inherit

 RewriteCond %{HTTP_HOST} !(<OHS_DOMAIN>|<OHS_DOMAIN>:<OHS_PORT>)

 RewriteRule ^(.*)$ - [F,L]

</VirtualHost>

This will cause a request to be forbidden if the Host Header is modified to a value other than
OHS_DOMAIN specified in the configuration.

Home

Guidance for Implementation Teams

4. Guidance for Implementation Teams

4.1 CSRF Mitigation – Generating Nonces

A nonce is a pseudo random number that may be used only once. If a nonce is sent across in every
request from the client to the server and the server validates the sent nonce every single time, then
it mitigates the risk of Cross Site Request Forgery (CSRF).

The product provides a REST Service to generate nonces – each nonce can be used only once to
identify each request uniquely, for each session. The product also has an inbuilt framework that
will validate the nonce sent in the request.

Therefore post a successful login you need to make a call to

https://<Host>:<Port>/digx/v1/session/nonce before you make a call to any other service.

This service will return back an array of nonces in the response header. You can pick up any one
nonce from the array and use it to send across the nonce required in a subsequent request. A
nonce can be used only once. You need to discard it after usage.

Please note that unless you send across a nonce, the services that are accessed post login will not
work.

4.2 Indirect Object Reference Implementation

4.2.1 What it means

It is a good security practice to hide sensitive data objects from the end user. Although the system
needs to play around with sensitive data objects, it is recommended to refer to these sensitive data
objects via pointers – tokens that temporarily point to the sensitive data objects but themselves do
not contain any sensitive data.

For example consider a credit card application on the web which offers the following 2 transactions:

 Credit Cards Summary – Displays a list of all credit cards the user owns.

 Credit Card Details – Displays the details of one specific Credit Card that the user selects

The Credit Cards Summary page will typically list all credit card numbers in a masked format. Let’s
assume that the end user holds 2 Credit Cards C1 and C2. When the end user hits the Summary
link, the server returns back the following in its response:

a. Masked Credit Card Number C1 (visible to the user)

b. Masked Credit Card Number C2 (visible to the user)

c. Token T1 (not visible to the user)

d. Token T2 (not visible to the user)

T1 and T2 are random tokens – difficult to guess – which the server has generated as proxies for
C1 and C2 respectively. The server has internally stored this mapping of C1-T1 and C2-T2
somewhere. Please note that T1 and T2 are tied to the current session. The moment the session
expires, T1 and T2 get discarded. Next time the user logs in, the server generates different tokens
T1x and T2x for C1 and C2 respectively.

Guidance for Implementation Teams

Whenever the user clicks on say Credit Card Details for C1, the client sends T1 to the server instead
of C1, as a request parameter. The server internally figures out that the request is actually for C1
and processes the request accordingly.

Thus we refer to sensitive data indirectly via tokens that are generated with different values for
every session.

4.2.2 How OBAPI supports it

To implement the above mechanism the framework offers interception of both the request and the
response. The recommendation is to apply indirect referencing to sensitive data fields like
Personally Identifiable Information fields aka PII data.

For the interception to work automatically, the sensitive fields holding the PII data must be defined
as a Java type, which extends the abstract class

com.ofss.digx.datatype.complex.MaskedIndirectedObject.

The abstract class exposes 2 data fields, namely value and displayValue. The value field

holds the indirect reference value, which is used during data transmission from the client to the

server. The displayValue field holds the masked value of the data.

The following data types are supported out-of-box:

1. com.ofss.digx.datatype.complex.Account - Account number

2. com.ofss.digx.datatype.complex.Applicant – The unique identifier to identify an

applicant. Typically a party ID.

3. com.ofss.digx.datatype.complex.ApplicationId – The unique identifier of an

application for account opening.

4. com.ofss.digx.datatype.complex.ContentId – The unique identifier for content

such as documents for a party.

5. com.ofss.digx.datatype.complex.CreditCard – Credit Card Number

6. com.ofss.digx.datatype.complex.DebitCard – Debit Card Number

7. com.ofss.digx.datatype.complex.Email – Email ID

8. com.ofss.digx.datatype.complex.Party – The unique identifier for a party.

9. com.ofss.digx.datatype.complex.PhoneNumber – Phone Number

10. com.ofss.digx.datatype.complex.SSN – Social Security Number

11. com.ofss.digx.datatype.complex.SubmissionId – The unique identifier for a

submission containing 1 or more applications for account opening.

To modify the existing/base product-masking pattern for any of the above data types, the following
entries need to be copied/cloned from the table DIGX_FW_CONFIG_ALL_B to the table
DIGX_FW_CONFIG_ALL_O and then modified as required in DIGX_FW_CONFIG_ALL_O.

Note: Please DO NOT MODIFY these entries IN DIGX_FW_CONFIG_ALL_B.

Guidance for Implementation Teams

Data Type Category ID / Preference Name Property ID

Account MaskingPattern AccountNumberMasking

Applicant MaskingPattern ApplicantIdMasking

ApplicationId MaskingPattern ApplicationIdIdMasking

ContentId MaskingPattern ContentIdMaskingPattern

CreditCard MaskingPattern CreditCardNumberMasking

DebitCard MaskingPattern DebitCardNumberMasking

Email MaskingPattern EmailIdMasking

Party MaskingPattern PartyIdMasking

PhoneNumber MaskingPattern PhoneNumberMasking

SSN MaskingPattern SSNMasking

SubmissionId MaskingPattern SubmissionIdMaskingPattern

The characters allowed in the making pattern are as below:

N – Keeps the character transparent. Does not mask.

Any other character – Replaces the character at the location with the character specified.

For example: XXXXXNNNN will keep the last 4 characters in clear text and mask the first 5
characters using the character ‘X’.

4.3 Output Encoding

To mitigate inline Cross Site Scripting attacks, the product provides a framework to encode the
data sent in the response. In the previous versions up until OBAPI 17.2.0.0.0 there was guidance
in this section of the security guide on the steps needed to be followed to implement output
encoding in your service response. However, in OBAPI 18.2.0.0.0 this is something that is handled
implicitly in the framework for all services, base as well as any custom services that you might write.

There is nothing that you need to do explicitly to achieve this.

Guidance for Implementation Teams

4.4 Implementing a custom Cryptography Provider

The base product provides a symmetric key cryptography framework that enables the
implementation team to implement its own custom symmetric key encryption/decryption
mechanism.

The product is shipped out with an out of the box Cryptography Provider that will be invoked if no
custom implementation is found.

If you wish to write your own custom Cryptography Provider, the required steps are as follows:

1. Write the custom cryptography provider class such that it implements the interface
com.ofss.digx.infra.crypto.spi.ICryptographyProvider

The interface defines methods as shown below:

2. Implement the encrypt() and decrypt() methods to encrypt and decrypt the data passed

to the methods, using the key passed along with the data.

3. Implement the getVersion() method to simply return a number greater than 1.

For example:

4. Implement the method to simply return the symmetric encryption algorithm name.

For example:

5. You can leave the implementations of the other two methods blank.

Guidance for Implementation Teams

6. In the custom jar file that contains the custom Cryptography Provider, create a file with the

name com.ofss.digx.infra.crypto.spi.ICryptographyProvider under the folder

structure META-INF/services

7. Open the file for editing.

8. Type out the fully qualified class name of your custom Cryptography Provider class.
For example:

Deploy your custom jar on the WebLogic server and you should be all set.

The Cryptography Provider will be invoked when the system invokes the encryption
framework for the following actions:

9. Encrypting the SMTP Server password entered by the OBAPI Admin, before storing it in the
Database.

10. Encrypting the system generated password for first time users, before storing it in the
Database. This is will be relevant to the function of Password Printing.

11. Encrypting the Identification Number for the selected Identification Type (Driver’s License,
Passport etc) during originating a loan application online.

4.5 Implementing a custom 2FA mechanism

1. You will need to write your own Java class to implement your own custom factor of
authentication.

2. The class must be registered in the table DIGX_AU_AUTH_TYPE_MST. Choose a custom
ID.

3. The custom class must implement the interface

com.ofss.digx.framework.security.authentication.provider.I2FactorAut

henticationProvider

Guidance for Implementation Teams

4. To configure your custom authenticator as an additional option available to the admin during
the 2FA configuration of transactions, set the custom ID used in Step 2 in the table
DIGX_FW_CONFIG_VAR_B

5. The configuration already seen in the above image suggests that an admin will have the
option of setting one of OTP, Soft Token and Security Questions as an additional factor of
authentication when configuring 2FA for user segments Retail, Corporate and Administrator.

6. The PROP_ID that the system must look up in this table (DIGX_FW_CONFIG_VAR_B) is
maintained in the table DIGX_FW_CONFIG_ALL_B against the PROP_ID
SUPPORTED_AUTH_TYPE.

7. If ${_PROPERTY_} is the value maintained against retailuser.SUPPORTED_AUTH_TYPE in
the table DIGX_FW_CONFIG_ALL_B, then for retail users the application will look up the
table DIGX_FW_CONFIG_VAR_B where PROP_ID = _PROPERTY_ to check what options
are available to the admin.

4.6 Configuring Password Printing Securely

Banks need to provide new customers with system-generated credentials to enable them to login
into the system for the first time. Some of the banks prefer to print the first time password on
paper and then hand it over to the customer in person.

To enable banks to do this, OBAPI has the “Print Password” function built out of the box.
However, the base OBAPI product will not provide an end-to-end solution since password printing
is not something universal.

Guidance for Implementation Teams

For the sake of this explanation, we are going to break up the process of Password Printing into 6
steps:

 Generate the password using a secure random number generation mechanism.

 Encrypt the password.

 Store the password in the Database.

 Retrieve the password for printing.

 Decrypt the password.

 Do the actual printing.

Steps 2 and 5 can be customized, but not mandatory. Please refer to section 4.4.

However, it is mandatory to implement Step 6. Here is how you can plug-in your implementation
of printing the password:

 Write a custom class that will implement the interface
com.ofss.digx.app.sms.user.printinformation.provider.IUserInformationPrintAdapter

 The interface defines a single method as shown below

 The DTO passed to the print() method will contain the password that is needed for

printing.

 Also, add the following entry to the file Preferences.xml
<Preference name="UserPrintConfig’"
PreferencesProvider="com.ofss.digx.infra.config.impl.DBBasedPropertyProvider"
parent="jdbcpreference" propertyFileName="select prop_id, prop_value from
digx_fw_config_all_b where category_id = 'UserPrintConfig'" syncTimeInterval="36000000" />

 Run the following Database script

Insert into DIGX_FW_CONFIG_ALL_B (PROP_ID, CATEGORY_ID, PROP_VALUE,

FACTORY_SHIPPED_FLAG, PROP_COMMENTS, SUMMARY_TEXT, CREATED_BY,

CREATION_DATE, LAST_UPDATED_BY, LAST_UPDATED_DATE, OBJECT_STATUS,

OBJECT_VERSION_NUMBER) values

('USER_INFORMATION_PRINT_PROVIDER','UserPrintConfig','com.ofss.digx.app.sms.

user.printinformation.provider.CustomUserInformationPrintAdapter','N',null,'

Custom adapter for User Password Information

Printing','ofssuser',sysdate,'ofssuser',sysdate,'A',1);

Home

	Table of Contents
	1. Preface
	1.1 Intended Audience
	1.2 Documentation Accessibility
	1.3 Access to Oracle Support
	1.4 Structure
	1.5 Related Information Sources

	2. General Security Principles
	2.1 Restrict Network Access to Critical Services
	2.2 Follow the Principle of Least Privilege
	2.3 Monitor System Activity
	2.4 Keep Up To Date on Latest Security Information

	3. Secure Installation and Configuration
	3.1 Architecture Diagram
	3.2 Installing WebLogic
	3.3 Configuring SSL
	3.4 Disable SSLv3
	-Dweblogic.security.SSL.protocolVersion=TLS1
	3.5 HTTP Response Header Configurations
	3.5.1 X-Frame-Options
	3.5.2 Content-Security-Policy
	3.5.3 X-XSS-Protection
	3.5.4 Strict-Transport-Security
	3.5.5 Cache-Control

	3.6 Cookie Attributes
	3.7 Password Policy Guidelines
	3.8 Configuring 2FA for login
	3.9 Configuring 2FA attributes
	3.10 Choosing a non blocking PRNG
	3.11 Mobile App SSL Pinning Configuration
	3.12 Generating Security Keys
	3.12.1 Generating Public and Private Key Pair
	3.12.2 Generating JWT Encryption Key

	3.13 API Rate Limiting Recommendations
	3.14 Host Header Injection Attack Recommendations

	4. Guidance for Implementation Teams
	4.1 CSRF Mitigation – Generating Nonces
	4.2 Indirect Object Reference Implementation
	4.2.1 What it means
	4.2.2 How OBAPI supports it

	4.3 Output Encoding
	4.4 Implementing a custom Cryptography Provider
	4.5 Implementing a custom 2FA mechanism
	4.6 Configuring Password Printing Securely

